ORIGIN OF LIFE
Kirschvink, J. L.; Maine, A. T.; and Vali, H. 1997. Paleomagnetic evidence supports a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science 275:1629–1633.
Lowell, P. 1908. Mars as the abode of life. New York: Macmillan.
Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; and Woese, C. R. 1987. Were the original Eubacteria thermophiles? Systematic and Applied Microbiology 9:34–39.
Baross, J. A., and Hoffman, S. E. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life 15:327–345.
Baross, J. A., and Deming, J. W. 1993. Deep-sea smokers: Windows to a subsurface biosphere? Geochimica et Cosmochimica Acta 57:3219–3230.
Baross, J. A., and Deming, J. W. 1995. Growth at high temperatures: Isolation, taxonomy, physiology and ecology. In The microbiology of deep-sea hydrothermal vent habitats, ed. D. M. Karl, pp. 169–217. Boca Raton, FL: CRC Press.
Baross, J. A., and Holden, J. F. 1996. Overview of hyperthermophiles and their heat-shock proteins. Advances in Protein Chemistry 48:1–35.
Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York: Springer-Verlag.
Caldeira, K., and Kasting, J. F. 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon ice clouds. Nature 359:226–228.
Cech, T. R., and Bass, B. L. 1986. Biological catalysis by RNA. Annual Review of Biochemistry 55:599–629.
Chang, S. 1994. The planetary setting of prebiotic evolution. In Early life on Earth, Nobel Symposium No. 84, ed. by S. Bengston, pp. 10–23. New York: Columbia Univ.Press.
Doolittle, W. F., and Brown, J. R. 1994. Tempo, mode, the progenote, and the niversal root. Proceedings of the National Academy of Sciences USA 91:6721–6728.
Doolittle, W. F.; Feng, D. -F.; Tsang, S.; Cho, G.; and Little, E. 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477.
Dott, R. H., Jr., and Prothero, D. R. 1993. Evolution of the Earth. 5th ed. New York: McGraw-Hill.
Forterre, P. 1997. Protein versus rRNA: Problems in rooting the universal tree of life. American Society for Microbiology News 63:89–95.
Forterre, P.; Confalonieri, F.; Charbonnier, F.; and Duguet, M. 1995. Speculations on the origin of life and thermophily: Review of available information on reverse gyrase suggests that hyperthermophilic prokaryotes are not so primitive. Origins of Life and Evolution of the Biosphere 25:235–249.
Fox, S. W. 1995. Thermal synthesis of amino acids and the origin of life.Geochimica et Cosmochimica Acta 59:1213–1214.
Giovannoni, S. J.; Mullins, T. D.; and Field, K. G. 1995. Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes. In Molecular ecology of aquatic microbes, ed. I. Joint, pp. 217–248,Berlin: Springer-Verlag.
Glikson, A. Y. 1993. Asteroids and the early Precambrian crustal evolution. Earth-Science Reviews 35:285–319.
Gogarten-Boekels, M.; Hilario, E.; and Gogarten, J. P. 1995. Origins of Life and Evolution of the Biosphere 25:251–264.
Gold, T. 1998. The deep hot biosphere. New York: Copernicus Books.
Grayling, R. A.; Sandman, K.; and Reeve, J. N. 1996. DNA stability and DNA binding proteins. Advances in Protein Chemistry 48:437–467.
Gu, X. 1997. The age of the common ancestor of eukaryotes and prokaryotes:Statistical inferences. Molecular Biology and Evolution 14:861–866.
Gupta, R. S., and Golding, G. B. 1996. The origin of the eukaryotic cell. Trends in Biochemical Sciences 21:166–171.
Hayes, J. M. 1994. Global methanotrophy at the Archean–Proterozoic transition.In Early life on Earth. Nobel Symposium No. 84, ed. S. Bengston,pp. 220–236. New York: Columbia Univ. Press.
Heden, C.-G. 1964. Effects of hydrostatic pressure on microbial systems.Bacteriological Reviews 28:14–29.
Hei, D. J., and Clark, D. S. 1994. Pressure stabilization of proteins from extreme thermophiles. Applied and Environmental Microbiology 60:932–939.
Hennet, R.; J.,-C., Holm, N. G.; and Engel, M. H., 1992. Abiotic synthesis of amino acids under hydrothermal onditions and the origin of life: A perpetual phenomenon? Naturwissenschaften 79:361–365.
Hilario, E., and Gogarten, J. P. 1993. Horizontal transfer of ATPase genes—the tree of life becomes the net of life. BioSystems 31:111–119.
Holden, J. F., and Baross, J. A. 1995. Enhanced thermotolerance by hydrostatic pressure in deep-sea marine yperthermophile Pyrococcus strain ES4. FEMS Microbiology Ecology 18:27–34.
Holden, J. F.; Summit, M.; and Baross, J. A. 1997. Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiology Ecology.
Huber, R.; Stoffers, P.; Hohenhaus, S.; Rachel, R.; Burggraf, S.; Jannasch, H. W.; and Stetter, K. O. 1990. Hyperthermophilic archaeabacteria within the crater and open-sea plume of erupting MacDonald Seamount.Nature 345:179–182.
Hunten, D. M. 1993. Atmospheric evolution of the terrestrial planets. Science 59:915–920.
Kadko, D.; Baross, J.; and Alt, J. 1995. The magnitude and global implications of hydrothermal flux. In Physical, chemical, biological and geological interactions within sea floor hydrothermal discharge, Geophysical Monograph 91, ed. S.
Humphris, R. Zierenberg, L. Mullineaux, and R. Thompson, pp. 446–466. Washington, DC: AGU Press.
Karhu, J., and Epstein, S. 1986. The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochimica et Cosmochimica Acta 50:1745–1756.
Kasting, J. F. 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. Journal of Geophysical Research 86:1147–1158.
Kasting, J. F. 1993. New spin on ancient climate. Nature 364:759–760.
Kasting, J. F. 1997. Warming early Earth and Mars. Science 276:1213–1215.
Kasting, J. F., and Ackerman, T. P. 1986. Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 234:1383–1385.
Knauth, L. P., and Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta 40:1095–1108.
Knoll, A. 1998. A Martian chronicle. The Sciences 38:20–26.
Lazcano, A. 1994. The RNA world, its predecessors, and its descendants. In Early life on Earth, Nobel Symposium No. 84, ed. S. Bengston, pp.70–80. New York: Columbia Univ. Press.
L’Haridon, S. L.; Raysenbach, A.-L.; Glenat, P.; Prieur, D.; and Jeanthon, C.1995. Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224.
Lowe, D. R. 1994. Early environments: Constraints and opportunities for early evolution. In Early life on Earth, Nobel Symposium No. 84, ed.S. Bengston, pp. 24–35. New York: Columbia Univ. Press.
Maher, K. A., and Stevenson, J. D. 1988. Impact frustration of the origin of life. Nature 331:612–614.
Marshall, W. L. 1994. Hydrothermal synthesis of amino acids. Geochimica et Cosmochimica Acta 58:2099–2106.
Michels, P. C., and Clark, D. S. 1992. Pressure dependence of enzyme catalysis.
In Biocatalysis at extreme environments, ed. M. W. W. Adams and R. Kelly,pp. 108–121. Washington, DC: American Chemical Society Books.
Miller, S. L. 1953. A production of amino acids under possible primitive Earth conditions. Science 117:528–529.
Miller, S. L., and Bada, J. L. 1988. Submarine hot springs and the origin of life. Nature 334:609–611.
Mojzsis, S.; Arrhenius, G.; McKeegan, K. D.; Harrison, T. M.; Nutman,A. P.; and Friend, C. R. L. 1966. Evidence for life on Earth before 3,800 million years ago. Nature 385:55–59.
Moorbath, S.; O’Nions, R. K.; and Pankhurst, R. J. 1973. Early Archaean age of the Isua iron formation. Nature 245:138–139.
Newman, M. J., and Rood, R. T. 1977. Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037.
Nickerson, K. W. 1984. An hypothesis on the role of pressure in the origin of life. Theoretical Biology 110:487–499.
Nisbet, E. G. 1987. The young Earth: An introduction to Archaean geology.Boston: Allen & Unwin.
Nutman, A. P.; Mojzsis, S. J.; and Friend, C. R. L. 1997. Recognition of ≥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica et Cosmochimica Acta 61:2475–2484.
Oberbeck, V. R., and Mancinelli, R. L. 1994. Asteroid impacts, microbes, and the cooling of the atmosphere. BioScience 44:173–177.
Oberbeck, V. R.; Marshall, J. R.; and Aggarwal, H. R. 1993. Impacts, tillites,and the breakup of Gondwanaland. Journal of Geology 101:1–19.
Ohmoto, H., and Felder, R. P. 1987. Bacterial activity in the warmer, sulphate-bearing Archaean oceans. Nature 328:244–246.
Pace, N. 1991. Origin of life—facing up to the physical setting. Cell 65:531–533.
Perry, E. C., Jr.; Ahmad, S. N.; and Swulius, T. M. 1978. The oxygen isotope composition of 3,800 m.y. old metamorphosed chert and iron formation from Isukasia West Greenland. Journal of Geology 86:223–239.
Sagan, C., and Chyba, C. 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221.
Schidlowski, M. 1988. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318.
Schidlowski, M. 1993. The initiation of biological processes on Earth: Summary of empirical evidence. In Organic Geochemistry, ed. M. H. Engel and S. A. Macko, pp. 639–655. New York: Plenum Press.
Schopf, J. W. 1994. The oldest known records of life: Early Archean stromatolites,microfossils, and organic matter. In Early life on Earth. Nobel Symposium No. 84, ed. S. Bengston, pp. 193–206. New York: Columbia Univ. Press.
Schopf, J. W., and Packer, B. M. 1987. Early Archean (3.3-billion to 3.5-billion-year-old) microorganisms from the Warrawoona Group, Australia. Science 237:70–73.
Shock, E. L. 1992. Chemical environments of submarine hydrothermal systems. Origin of Life and Evolution of the Biosphere 22:67–107.
Sogin, M. L. 1991. Early evolution and the origin of eukaryotes. Current Opinion in Genetics and Development 1:457–463.
Sogin, M. L.; Silverman, J. D.; Hinkle, G.; and Morrison, H. G. 1996. Problems with molecular diversity in the Eucarya. In Society for General Microbiology Symposium: Evolution of microbial life, ed. D. M. Roberts, P. Sharp,G. Alderson, and M. A. Collins, pp. 167–184. Cambridge, England: Cambridge Univ. Press.
Staley, J. T., and J. J. Gosink. Poles apart: Biodiversity and biogeography of polar sea ice bacteria. Ann. Rev. Microbiol.
Stevens, T. O., and McKinley, J. P. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454.
Woese, C. R. 1994. There must be a prokaryote somewhere: Microbiology’s search for itself. Microbiological Reviews 58:1–9.
Woese, C. R.; Kandler, O.; and Wheelis, M. L. 1990. Towards a natural system of organisms: Proposals for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 87:4576–4579.
Doolittle, W. F. 1999. Phylogenetic classification and the Universal Tree.Science 284:2124–2128 LIFE. HABITAT ZONES
Forget, F., and Pierrehumbert, G. D. 1997. Warming early Mars with carbon dioxide that scatters infrared radiation. Science 278:1273–1276.
Hale, A. 1994. Orbital coplanarity in solar-type binary systems: Implications for planetary system formation and detection. Astronomical Journal 107:306–332.
Hart, M. H. 1978. The evolution of the atmosphere of the earth. Icarus 33:23–39.
Hart, M. H. 1979. Habitable zones about main sequence stars. Icarus 37:351–357.
Kasting, J. F. 1988. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494.
Kasting, J. F. 1993. Earth’s early atmosphere. Science 259:920–926.
Kasting, J. F. 1997. Update: The early Mars climate question heats up. Science 278:1245.
Ksanfomaliti, L. V. 1998. Planetary systems around stars of late spectral types: A Limitation for habitable zones. Astronomicheskii Vestnik 32:413.
Lepage, A. J. 1998. Habitable moons. Sky and Telescope 96: 50.
Miller, S. L. 1953. Production of amino acids under possible primitive Earth conditions. Science 117:528.
Sagan, C., and Chyba, C. 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221.
Sleep, N. H.; Zahnle, K. J.; Kasting, J. F.; and Morowitz, H. J. 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139.
Squyres, S. W., and Kasting, J. F., 1994. Early Mars—how warm and how wet? Science 265, 744.
Wetherill, G. W. 1996. The formation and habitability of extra-solar planets. Icarus 119:219–238.
Whitmire, D. P., Matese, J. J.; Criswell, L.; and Mikkola, S. 1998. Habitable planet formation in binary star systems. Icarus 132:196–203.
Williams, D. M., Kasting, J. F.; and Wade, R. A. 1997. Habitable moons around extrasolar giant planets. Nature 385: 234–236.
Bryden, G., D.; Lin, N. C.; and Terquem, C. 1998. Planet formation; orbital evolution and planet-star tidal interaction. ASP Conf. Ser. 138: 1997 Pacific Rim Conference on Stellar Astrophysics 23.
Cameron, A. G. W. 1995. The first ten million years in the solar nebula. Meteoritics 30, 133–161.
Chyba, C. F. 1987. The cometary contribution to the oceans of the primitive Earth. Nature 220:632–635.
Chyba, C. F. 1993. The violent environment of the origin of life: Progress and uncertainties. Geochimica et Cosmochimica Acta 57:3351–3358.
Chyba, C. F., and Sagan, C. 1992. Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355:125–131.
Chyba, C. F.; Thomas, P. J.; Brookshaw, L.; and Sagan, C. 1990. Cometary delivery of organic molecules to the early Earth. Science 249:366–373.
Gonzalez, G.; Laws, C.; Tyagi, S.; and Reddy, B. E. 2001. Parent stars of extrasolar planets: VI. Abundance analyses of 20 new systems. Astronomical Journal 121:432–452.
Holland, H. D. 1984. The chemical evolution of the atmosphere and oceans. Princeton, NJ: Princeton Univ. Press.
Lin, D. N. C. 1997. On the ubiquity of planets and diversity of planetary systems.Proceedings of the 21st Century Chinese Astronomy Conference: dedicated to Prof. C. C. Lin, Hong Kong, 1–4 August 1996, ed. K. S.Cheng and K. L. Chan, Singapore. River Edge, NJ: World, Scientific, p. 313.
Lunine, J., 1999. Earth: Evolution of a habitable world. Cambridge, England: Cambridge Univ. Press.
Maher, K. A. J., and Stevenson, D. J. 1988. Impact frustration of the origin of life. Nature 331:612–614.
Sagan, C., and Chyba, C. 1997. The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221.
Sleep, N. H.; Zahnle, K. J.; Kasting, J. F.; and Morowitz, H. J. 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142.
Taylor, S. R. 1998. On the difficulties of making earth-like planets. Meteoritics and Planetary Science 32:153.
Taylor, S. R., and McLennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews in Geophysics 33:241–265.
Towe, K. M. 1994. Earth’s early atmosphere: Constraints and opportunities for early evolution. In Early life on Earth, Nobel Symposium No. 84, ed.S. Bengston, pp. 36–47. New York: Columbia Univ. Press.
Van Andel, T. H. 1985. New views on an old planet. Cambridge, England: Cambridge Univ. Press.
Walker, J. C. G. 1977. Evolution of the atmosphere. London: Macmillan.
Wetherill, G. W. 1991. Occurrence of Earth-like bodies in planetary systems.Science 253:535–538.
Wetherill, G. W. 1994. Provenance of the terrestrial planets. Geochimica et Cosmochimica Acta 58:4513–4520.
Wetherill, G. W. 1996. The formation and habitability of extra-solar planets. Icarus 119:219–238. LIFE’S FIRST APPEARANCE ON EARTH
Abbott, D. H., and Hoffman, S. E. 1984. Archaean plate tectonics revisited.1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics 3:429–448.
Bada, J. L.; Bigham, C.; and Miller, S. L. 1994. Impact melting of frozen oceans on the early Earth: Implications for the origin of life. Proceedings of the National Academy of Sciences USA 91:1248–1250.
Barns, S. M.; Fundyga, R. E.; Jeffries, M. W.; and Pace, N. R. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of Sciences USA 91:1609–1613.
Baross, J. A., and Deming, J. W. 1995. Growth at high temperatures: Isolation and taxonomy, physiology, and ecology. In The microbiology of deep-sea hydrothermal vent habitats, ed. D. M. Karl, pp. 169–217. Boca Raton, FL: CRC Press.
Baross, J. A., and Hoffman, S. E. 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evolution Biosphere 15:327–345.
Brakenridge, G. R.; Newsom, H. E.; and Baker, V. R. 1985. Ancient hot springs on Mars: Origins and paleoenvironmental significance of small Martian valleys. Geology 13:859–862.
Carl, M. H. 1996. Water on Mars. New York: Oxford Univ. Press.
Cloud, P. 1988. Oasis in space: Earth history from the beginning. New York: W. W.Norton.
Converse, D. R.; Holland, H. D.; and Edmond, J. M. 1984. Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits. Earth Planet. Sci. Lett. 69:159–175.
Criss, R. E., and Taylor, H. P., Jr. 1986. Meteoric-hydrothermal systems. Rev. Mineral. 16:373–424.
Daniel, R. M. 1992. Modern life at high temperatures. In Marine Hydrothermal Systems and the Origin of Life, ed. N. Holm, Orig. Life Evolution Biosphere 22:33–42.
de Duve, C. 1995. Vital dust: Life as a cosmic imperative. New York: Basic Books.
Doolittle, W. F. 1999. Phylogenetic classification and the Universal Tree. Science 284:2124.
Glikson, A. 1995. Asteroid comet mega-impacts may have triggered major episodes of crustal evolution. Eos, 76:49–54.
Gonzalez, G. 1998. Extraterrestrials: A Modern View. Society 35 (5): 14–20.
Griffith, L. L., and Shock, E. L. 1995. A geochemical model for the formation of hydrothermal carbonate on Mars. Nature 377:406–408.
Griffith, L. L., and Shock, E. L. 1997. Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations. J. Geophys. Res. 102:9135–9143.
Hoyle, F.; Wickramasinghe, N. C.; and Mufti, S. A. 1985. The case for interstellar micro-organisms. Astrophysics and Space Science 110:401.
Karl, D. M. 1995. Ecology of free-living, hydrothermal vent microbial communities. In The microbiology of deep-sea hydrothermal vent habitats, ed. D. M.Karl, pp. 35–124. Boca Raton, FL: CRC Press.
MacLeod, G.; McKeown, C.; Hall, A. J.; and Russell, M. J. 1994. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evolution Biosphere 23:19–41.
McCollom, T. M., and Shock, E. L. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta.
McSween, Jr., H. Y. 1994. What we have learned about Mars from SNC meteorites. Meteoritics 29:757–779.
Miller, S., and Lazcano, A. 1996. From the primitive soup to Cyanobacteria: It may have taken less than 10 million years. In Circumstellar habitable zones, ed. L. Doyle, pp. 393–404. Menlo Park, CA: Travis House.
Pace, N. R. 1991. Origin of life—facing up to the physical setting. Cell 65:531–533.
Romanek, C. S.; Grady, M. M.; Wright, I. P.; Mittlefehldt, D. W.; Socki, R. A.; C. T. Pillinger, C. T.; and Gibson, Jr., E. K. 1994. Record of fluid rock interactionson Mars from the meteorite ALH84001. Nature 372:655–657.
Russell, M. J.; Daniel, R. M.; and Hall, A. J. 1993. On the emergence of life via catalytic iron sulphide membranes. Terra Nova 5:343–347.
Russell, M. J.; Daniel, R. M.; Hall, A. J.; and Sherringham, J. 1994. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Molec. Evol. 39:231–243.
Russell, M. J., and Hall, A. J. 1995. The emergence of life at hot springs: A basis for understanding the relationships between organics and mineral deposits. In Proceedings of the Third Biennial SGA Meeting, Prague, Mineral deposits: From their origin to their environmental impacts, ed. J. Pasava, B. Kribek, and K. Zak, pp. 793–795.
Russell, M. J., and Hall, A. J. 1997. The emergence of life from iron monosulphide bubbles at a hydrothermal redox front. J. Geol. Soc.
Russell, M. J.; Hall, A. J.; Cairns-Smith, A. G.; and Braterman, P. S. 1988. Submarine hot springs and the origin of life. Nature 336:117.
Russell, M. J.; Hall, A. J.; and Turner, D. 1989. In vitro growth of iron sulphide chimneys: Possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241.
Schwartzman, D.; McMenamin, M.; and Volk, T. 1993. Did surface temperatures constrain microbial evolution? BioScience 43:390–393.
Seewald, J. S. 1994. Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions. Nature 370:285–287.
Segerer, A. H.; Burggraf, S.; Fiala, G.; Huber, G.; Huber, R.; Pley, U.; and Stetter, K. O. 1993. Life in hot springs and hydrothermal vents. Orig.Life Evol. Biosphere 23:77–90.
Shock, E. L. 1990a. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosphere 20:331–367.
Shock, E. L. Chemical environments in submarine hydrothermal systems. 1992a. In Holm, N. Marine hydrothermal systems and the origin of life,ed. N. Holm. Orig. Life Evol. Biosphere 22:67–107.
Shock, E. L.; McCollom, T.; and Schulte, M. D. 1995. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems.Orig. Life Evol. Biosphere 25:141–159.
Shock, E. L., and Schulte, M. D. 1997. Hydrothermal systems as locations of organic synthesis on the early Earth and Mars. Orig. Life Evol. Biosphere.
Sleep, N. H.; Zahnle, K. J.; Kasting, J. F.; and Morowitz, H. J. 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142.
Stetter, K. O. 1995. Microbial life in hyperthermal environments. ASM News, American Society for Microbiology 61:285–290.
Treiman, A. H. 1995. A petrographic history of Martian meteorite ALH84001: Two shocks and an ancient age. Meteoritics 30:294–302.
Von Damm, K. L. 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Ann. Rev. Earth Planet. Sci. 18:173–204.
Watson, L. L.; Hutcheon, I. D.; Epstein, S.; and Stolper, E. M. 1994. Water on Mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265:86–90.
Wilson, E. 1992. The diversity of life. Cambridge, MA: Harvard Univ. Press.
Wilson, L., and Head, III, J. W. 1994. Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32:221–263.
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.
Woese, C. R.; Kandler, O.; and Wheelis, M. L. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA 87:4576–4579. ANIMALS
Akam, M., et al., eds. 1994. The evolution of developmental mechanisms. Cambridge, England: The Company of Biologists, Ltd.
Brasier, M. D.; Shields, G.; Kuleshoy, V. N.; and Zhegallos, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133:445–485.
Bowring, S. A., Grotzinger, J. P.; Isachsen, C. E.; Knoll, A. H.; Pelechaty,S. M.; and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science 261:1293–1298.
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479–485.
Chen, J.-Y., and Erdtmann, B.-D. 1991. Lower Cambrian fossil lagerstatte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life. In The early evolution of metazoa and the significance of problematic taxa, ed. A. M. Simonetta and S. Conway Morris, pp. 57–76. Cambridge, England: Cambridge Univ. Press.
Conway Morris, S. 1997. Defusing the Cambrian "explosion”? Current Biology 7:R71–R74.
Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: The record of biotic changes across the Precambrian–Cambrian boundary. In The paleobiology of trace fossils, ed. S. K. Donovan, pp. 105–133. London: Wiley.
Erwin, D. H. 1993. The origin of metazoan development. Biological Journal of the Linnean Society 50:255–274.
Evans, D. A. 1998. True polar wander, a supercontinental legacy. Earth and Planetary Science Letters 157:1–8.
Evans, D. A.; Beukes, N. J.; and Kirschvink, J. L. 1997. Low-latitude glaciations in the Paleoproterozoic era. Nature 386(6622):262–266.
Evans, D. A.; Ripperdan, R. L.; and Kirschvink, J. L. 1998. Polar wander and the Cambrian (response). Science 279:16. Full article accessible at http://www.sciencemag.org/cgi/content/full/279/5347/9a
Evans, D. A.; Zhuravlev, A. Y.; Budney, C. J.; and Kirschvink, J. L. 1996. Paleomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine 133:478–496.
Fedonkin, M. A., and B. M. Waggoner. 1996. The Vendian fossil Kimberella: The oldest mollusk known. Geological Society of America, Abstracts with Program.28(7):A–53.
Gerhart, J., and Kirschner, M. 1997. Cells, embryos, and evolution:Toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability.Boston: Blackwell Science Inc.
Grotzinger, J. P.; Bowring, S. A.; Saylor, B.; and Kauffman, A. J. 1995. New biostratigraphic and geochronological constraints on early animal evolution. Science 270:598–604.
Kappen, C.; and Ruddle, F. H. 1993. Evolution of a regulatory gene family: HOM/Hox genes. Current Opinion in Genetics and Development 3:931–938.
Knoll, A., and Carroll, S. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science 284:2129–2137.
Knoll, A. H.; Kaufman, A. J.; Semikhatov, M. A.; Grotzinger, J. P.; and Adams, W. 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23:1139–1143.
Margulis, L., and Sagan, D. 1986. Microcosmos. New York: Simon & Schuster.Raff, R. A. 1996. The shape of life. Chicago: Univ. of Chicago Press.
Schwartzman, D., and Shore, S. 1996. Biotically mediated surface cooling and habitability for complex life. In Circumstellar habitable zones, ed.L. Doyle, pp. 421–443. Menlo Park, CA: Travis House.
Seilacher, A.; Bose, P. K.; and Pfluger, F. 1998 Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India October 2;Science 282:80–83.
Valentine, J. W. 1994. Late Precambrian bilaterans: Grades and clades. Proceedings of the National Academy of Sciences 91:6751–6757.
Valentine, J. W.; Erwin, D. H.; and Jablonski, D. 1996. Developmental evolution of metazoan body plans: The fossil evidence. Developmental Biology 173:373–381.
Wilmer, P. 1990. Invertebrate relationships: Patterns in animal evolution. Cambridge,England: Cambridge Univ. Press.
Wray, G. A.; Levinton, J. S.; and Shapiro, L. 1996. Molecular evidence for deep pre-Cambrian divergences among the metazoan phyla. Science 274:568–573. SNOWBALL EARTH
Bertani, L. E.; Huang, J.; Weir, B.; and Kirschvink, J. L. 1997. Evidence for two types of subunits in the bacterioferritin of Magnetospirillum magnetotacticum Gene 201:31–36.
Evans, D. A.; Beukes, N. J.; and Kirschvink, J. L. 1997. Low-latitude glaciations in the Paleoproterozoic era. Nature 386(6622):262–266.
Evans, D. A.; Zhuravlev, A. Y.; Budney, C. J.; and Kirschvink, J. L. 1996. Paleomagnetism of the Bayan Gol Formation, western Mongolia. Geological Magazine 133:478–496.
Hoffman, P.; Kaufman, A.; Halverson, G.; and Schrag, D. 1998. A Neoproterozoic Snowball Earth. Science 281:1342–1346.
Kirschvink, J. L. 1992. A paleogeographic model for Vendian and Cambrian time. In The Proterozoic biosphere: A multidisciplinary study, ed. J. W. Schopf,C. Klein, and D. Des Maris, pp. 567–581. Cambridge, England: Cambridge Univ. Press.
Kirschvink, J. L.; Gaidos, E. J.; Bertani, L. E.; Beukes, N. J.; Gutzmer, J.; Evans,D. A.; Maepa, L. N.; and Steinberger, R. E. The paleoproterozoic snow ball Earth: deposition of the Kalahari manganese field and evolution of the Archaea and Eukarya kingdoms. Science, in extended review (as of 11/98).
Kitchner, P. 1996. The lives to come: The genetic revolution and human possibilities. New York: Touchstone Books.
Schwartzman, D.; McMenamin, M.; and Volk, T. 1993. Did surface temperatures constrain microbial evolution? BioScience 43:390–393.
Schwartzman, D., and Shore, S. 1996. Biotically mediated surface cooling and habitability for complex life. In Circumstellar habitable zones, ed. L.Doyle, pp. 421–443. Menlo Park, CA: Travis House. THE CAMBRIAN EXPLOSION
Aitken, J. D., and McIlreath, I. A. 1984. The Cathedral Reef Escarpment, a Cambrian great wall with humble origins. Geos 13:17–19.
Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology 23:1079–1082.
Aronson, R. B. 1992. Decline of the Burgess Shale fauna: Ecologic or taphonomic restriction? Lethaia 25:225–229.
Bergstrom, J. 1986. Opabinia and Anomalocaris, unique Cambrian "arthropods.”Lethaia 19:241–246.
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology 22:631–664.
Briggs, D. E. G. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zoologica (Stockholm) 73:293–300.
Briggs, D. E. G., and Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology 31:779–798.
Briggs, D. E. G., and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science 246:241–243.
Briggs, D. E. G., and Whittington, H. B. 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of Edinburgh 76:149–160.
Budd, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 29:1–14.
Butterfield, N. J. 1990a. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272–286.
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247–262.
Butterfield, N. J., and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and "shelly” Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology 70:893–899.
Chen Junyuan; Edgecombe, G. D.; Ramskold, L.; and Zhou Guiqing. 1995. Head segmentation in early Cambrian Fuxianbuia: Implications for arthropod evolution. Science 268:1339–1343.
Chen Junyuan; Edgecombe, G. D.; and Ramskold, L. 1997. Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang fauna, China. Records of the Australian Museum 49:1–24.
Chen Junyuan; Ramskold, L.; and Zhou Guiqing. 1994. Evidence for monophyly and arthropod affinity of Cambrian predators. Science 264:1304–1308.
Cloud, P. 1987. Oasis in space: Earth history from the begining. New York: Norton.
Collins, D.; Briggs, D.; and Conway Morris, S. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 222:163–167.
Conway Morris, S. 1979a. The Burgess Shale (Middle Cambrian) fauna. Annual Review of Ecology and Systematics 10:327–349.
Conway Morris, S., ed. 1982. Atlas of the Burgess Shale. London: Palaeontological Association.
Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion.Science 246:339–346.
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: Implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences 80:271–283.
Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas.Annual Review of Earth and Planetary Sciences 18:101–22.
Conway Morris, S. 1992. Burgess Shale-type faunas in the context of the "Cambrian explosion”: A review. Journal of the Geological Society, London 149:631–636.
Conway Morris, S. 1993a. Ediacaran-like fossils in Cambrian Burgess Shaletype faunas of North America. Palaeontology 36:593–635.
Conway Morris, S. 1993b. The fossil record and the early evolution of the metazoa. Nature 361:219–225.
Conway Morris, S. 1998. Crucible of creation. Oxford Univ. Press.
Conway Morris, S., and Whittington, H. B. 1985. Fossils of the Burgess Shale, a national treasure in Yoho National Park, British Columbia. Miscellaneous Reports of the Geological Survey of Canada 43:1–31.
Darwin, C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.
Dzik, J. 1995. Yunnanozoon and the ancestry of chordates. Acta Palaeontologica Polonica 40:341–360.
Erwin, D. M. 1993. The origin of metazoan development: A palaeobiological perspective. Biological Journal of the Linnean Society 50:255–274.
Erwin, D. M.; Valentine, J.; and Jablonski, D. 1997. The origin of animal body plans. American Scientist 85(2):126–137.
Fritz, W. H. 1971. Geological setting of the Burgess Shale. In Symposium on Extraordinary Fossils. Proceedings of the North American Paleontological Convention, Field Museum of Natural History, Chicago. September 5–7, 1969,Part I, pp. 1155–1170. Lawrence, KS: Allen Press.
Glaessner, M. F., and Wade, M. 1966. The late precambrian fossils from Ediacara, South Australia. Palaeontology 9 4):599–628.
Gould, S. J. 1986. Wonderful life. New York: Norton.
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morphospace.Paleobiology 17:411–423.
Grotzinger, J. P.; Bowring, S. A.; Saylor, B. Z.; and Kaufman, A. J. 1995.Biostratigraphic and geochronologic constraints on early animal evolution.Science 270:598–604.
Kirschvink, J. L.; Magaritz, M.; Ripperdan, R. L.; Zhuravlev, A. Y.; and Rozanov, A. Y. 1991. The Precambrian–Cambrian boundary: Magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1:69–91.
Kirschvink, J. L.; Ripperdan, R. L.; and Evans, D. A. 1997. Evidence for a large-scale Early Cambrian reorganization of continental masses by inertial interchange true polar wander. Science 277:541–545.
Kirschvink, J. L., and Rozanov, A. Y. 1984. Magnetostratigraphy of Lower Cambrian strata from the Siberian Platform: A paleomagnetic pole and a preliminary polarity time scale. Geological Magazine 121:189–203.
Lowenstam, H. A., and Margulis, L. 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. BioSystems 12:27–41.
Ludvigsen, R. 1989. The Burgess Shale: Not in the shadow of the Cathedral Escarpment. Geoscience Canada 16:51–59.
McMenamin, M., and McMenamin, R. 1990. The emergence of animals. New York: Columbia Univ. Press.
Ramskold, L., and Hou Xianguang. 1991. New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature 351:225–228.
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana 2:1–105.
Seilacher, A.; Bose, P. K.; and Pfluger, F. 1998. Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India October 2;Science 282:80–83.
Simonetta, A. M., and Conway Morris, S., eds. 1991. The early evolution of metazoa and the significance of problematic taxa. Cambridge, England: Cambridge Univ. Press.
Simonetta, A. M., and Insom, E. 1993. New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria. Bollettino Zoologica 60:97–107.
Towe, K. M. 1996. Fossil preservation in the Burgess Shale. Lethaia 29:107–108.
Whittington, H. B. 1971a. The Burgess Shale: History of research and preservation of fossils. In Symposium on extraordinary fossils. Proceedings of the North American Paleontological Convention, Field Museum of Natural History, Chicago, September 5–7, 1969, Part I, pp. 1170–1201. Lawrence, KS: Allen Press.
Whittington, H. B. 1979. Early arthropods, their appendages and relationships. In The origin of major invertebrate groups, ed. M. R. House. Systematics Association Special Volume 12, pp. 253–268.
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 309:569–609.
Wills, M. A.; Briggs, D. E. G.; and Fortey, R. A. 1994. Disparity as an evolutionary index: A comparison of Cambrian and Recent arthropods. Paleobiology 20:93–130.
Wilson, E. O. 1994. The diversity of life. London: Penguin. Yochelson, E. L. 1996. Discovery, collection, and description of the Middle Cambrian Burgess Shale biota by Charles Doolittle Walcott. Proceedings of the American Philosophical Society 140:469–545. MASS EXTINCTION
Alvarez, L.; Alvarez, W.; Asaro, F.; and Michel, H. 1980. Extra-terrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1094–1108.
Alvarez, W. 1997. T. Rex and the Crater of Doom. Princeton, NJ: Princeton University Press.
Annis, J. 1999. Placing a limit on star-fed Kardashev type III civilisations. Journal of the British Interplanetary Society 52:33–36.
Bourgeois, J. 1994. Tsunami deposits and the K/T boundary: A sedimentologist’s perspective. Lunar Planetary Institute Cont. 825:16.
Caldeira, K., and Kasting, J. F. 1992. Susceptibility of the early Earth to irrversible glaciation caused by carbon ice clouds. Nature 359:226–228.
Covey, C.; Thompson, S.; Weissman, P.; and MacCracken, M. 1994. Global climatic effects of atmospheric dust from an asteroid or comet impact on earth. Global and Planetary Change 9:263–273.
Dar, A.; Laor, A.; and Shaviv, N. 1998. Life extinctions by cosmic ray jets.Physical Rev. Let. 80:5813–5816.
Donovan, S. 1989. Mass extinctions: Processes and evidence. New York: Columbia Univ. Press.
Ellis, J., and Schramm, D. 1995. Could a supernova explosion have caused a mass extinction? Proc. Nat. Acad. Sci. 92:235–238.
Erwin, D. 1993. The great Paleozoic crisis: Life and death in the Permian. New York: Columbia Univ. Press.
Erwin, D. 1994. The Permo-Triassic extinction. Nature 367:231–236.
Grieve, R. 1982. The record of impact on Earth. Geol. Soc. America Special Paper 190, ed. Silver, S., and Schultz, P., pp. 25–37.
Hallam, A. 1994. The earliest Triassic as an anoxic event, and its relationship to the End-Paleozoic mass extinction. In Global environments and resources,pp. 797–804. Canadian Society of Petroleum Geologists,Mem. 17.
Hallam, A., and Wignall, P. 1997. Mass extinctions and their aftermath. Oxford, England: Oxford Univ. Press.
Hsu, K., and McKenzie, J. 1990. Carbon isotope anomalies at era boundaries: Global catastrophes and their ultimate cause. Geol. Soc. Am. Special Paper 247, pp. 61–70.
Isozaki, Y. 1994. Superanoxia across the Permo-Triassic boundary: Record in accreted deep-sea pelagic chert in Japan: In Global environments and resources,pp. 805–812. Canadian Society of Petroleum Geologists, Mem. 17.
Knoll, A.; Bambach, R.; Canfield, D.; and Grotzinger, J. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452–457.
Marshall, C. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:1–10.
Marshall, C., and Ward, P. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of Western European Tethys. Science 274:1360–1363.
McLaren, D. 1970. Time, life and boundaries. Journal of Paleontology 44:801–815. Morante, R. 1996. Permian and early Triassic isotopic records of carbon and strontium events in Australia and a scenario of events about the Permian–Triassic boundary. Historical Geology 11:289–310.
Muller, R. 1988. Nemesis: The death star. London: Weidenfeld & Nicholson.
Pope, K.; Baines, A.; Ocampo, A.; and Ivanov, B. 1994. Impact winter and the Cretaceous-Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth and Planetary Science Express 128:719–725.
Rampino, M., and Caldeira, K. 1993. Major episodes of geologic change: Correlations, time structure and possible causes. Earth Planetary Science Letters 114:215–227.
Raup, D. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218.
Raup, D. 1990. Extinction: Bad genes or bad luck? New York: Norton.
Raup, D. 1990. Impact as a general cause of extinction: A feasibility test. In Global catastrophes in earth history, ed. V. Sharpton and P. Ward, pp. 27–32.Geol. Soc. Am. Special Paper 247.
Raup, D. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:37–48.
Raup, D., and Sepkoski, J. 1984. Periodicity of extinction in the geologic past. Proc. Nat. Acad. Sci., A81, p. 801–805.
Retallack, G. 1995. Permian–Triassic crisis on land. Science 267:77–80.
Schultz, P., and Gault, D. E. 1990. Prolonged global catastrophes from oblique impacts, in Sharpton, V. L. and Ward, P. D., eds., Global catastrophes in Earth history, An interdisciplinary conference on impacts, volcanism and mass mortality: Geological Society of America Special Paper 247, p. 239–261.
Sheehan, P.; Fastovsky, D.; Hoffman, G.; Berghaus, C.; and Gabriel, D. 1991. Sudden extinction of the dinosaurs: Latest Cretaceous, Upper Great Plains, U.S.A. Science 254:835–839.
Sigurdsson, H.; D’hondt, S.; and Carey, S. 1992. The impact of the Cretaceous–Tertiary bolide on evaporite terrain and generation of major sulfuric acid aerosol. Earth Planetary Science Letters 109:543–559.
Stanley, S. 1987. Extinctions. New York: Freeman.
Stanley, S., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:1340–1344.
Teichert, C. 1990. The end-Permian extinction. In Global events in Earth history,ed. E. Kauffman and O. Walliser, pp. 161–190.
Urey, H. 1973. On cometary collisions and geological periods. Nature 242:32.
Ward, P. 1990. The Cretaceous/Tertiary extinctions in the marine realm: A 1990 perspective. In Geological Society of America Special Paper 247, pp. 425–432.
Ward, P. 1994a. The end of evolution. New York: Bantam Doubleday Dell.
Ward, P. D. 1990. A review of Maastrichtian ammonite ranges. In Geological Society of America Special Paper 247, pp. 519–530.
Ward, P., and Kennedy, W. 1993. Maastrichtian ammonites from the Biscay region (France and Spain). Journal of Paleontology, Memoir 34, 67:58.
Ward, P.; Kennedy, W. J.; MacLeod, K.; and Mount, J. 1991. Ammonite and inoceramid bivalve extinction patterns in Cretaceous–Tertiary boundary sections of the Biscay Region (southwest France, northern Spain). Geology 19:1181. THE IMPORTANCE OF PLATE TECTONICS
Armstrong, R. L. 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Philos. Trans. R. Soc.London Ser. A 301:443–472.
Arrhenius, G. 1985. Constraints on early atmosphere from planetary accretion processes. Lunar and Planetary Sciences Institute Rep 85-01:4–7.
Beck, M. E., Jr. 1980. Paleomagnetic record of plate-margin tectonic processes along the western edge of North America. J. Geophys. Res.85:7115–7131.
Broecker, W. 1985. How to build a habitable planet. Palisades, NY: Eldigio Press.
Card, K. D. 1986. Tectonic setting and evolution of Late Archean greenstone belts of Superior province, Canada. In Tectonic evolution of greenstone belts,ed. M. J. de Wit and L. D. Ashwal. Lunar and Planetary Sciences Institute Tech. Rep. 86-10:74–76.
Condie, K. C. 1984. Plate tectonics and crustal evolution 2d ed. Oxford, England: Pergamon Press.
Cox, A. 1973. Plate tectonics and geomagmetic reversals. San Francisco: Freeman. Dalziel, I. W. D. 1992. On the organization of American plates in the Neoproterozoic and the breakout of Laurentia. GSA Today 2:237.
DePaolo, D. J. 1984. The mean life of continents: Estimates of continental recycling from Nd and Hf isotopic data and implications for mantle structure.Geophys. Res. Lett. 10:705–708.
Dietz, R. S. 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature 190:854–857.
Goldsmith, D., and Owen, 1992. The search for life in the universe. Menlo Park,CA: Benjamin/Cummings.
Hartman, H., and McKay, C. P. 1995. Oxygenic photosynthesis and the oxidation state of Mars. Planetary and Space Science 43:123–128.
Hess, H. H. 1962. History of ocean basins. In Petrologic Studies—a volume to honor A.F. Buddington, ed. A. E. J. Engel et al., pp. 599–620. Boulder, CO:Geological Society of America.
Hoffman, P. F. 1988. United plates of America—the birth of a craton. Ann. Rev. Earth Planet. Sci. 16:543–603.
Howell, D. G. 1994. Principles of Terrane Analysis. Dordrecht, Netherlands:Kluwer Academic.
Howell, D. G., and Murray, R.W. 1986. A budget for continental growth and denudation. Science 233:446–449.
Hsu, K. J. 1981. Thin-skinned plate-tectonic model for collision-type orogenesis. Sci. Sin. 24:100–110.
Irving, E.; Monger, J. W. H.; and Yole, R. W. 1980. New paleomagnetic evidence for displaced terranes in British Columbia. In The continental crust and its mineral deposits, ed. D. W. Strangway. Geol. Assoc. Canada Spec. Pap. 20:441–456.
McElhinny, M. W. 1973. Paleomagnetism and plate tectonics. Cambridge, England:Cambridge Univ. Press.
Solomatov, V., and Moresi, L. 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geo. Res. Let. 24:1907–1910.
Taylor, S. R. 1992. Solar system evolution: A new perspective. New York: Cambridge University Press.
Uyeda, S. 1987. The new view of the earth. San Francisco: Freeman.
Valentine, J., and Moores, E. M. 1974. Plate tectonics and the history of life in the oceans. Scientific American 30(4):80–89.
Vine, F. J., and Mathews, D. H. 1963. Magnetic anomalies over oceanic ridges. Nature 199:947–949.
Walker, J. C. G.; Hays, P. B.; and Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research 86:9776–9782.
Wegener, A. 1924. The origin of continents and oceans. London: Methuen.
Wilson, J. T. 1965. A new class of faults and their bearing on continental drift. Nature 207:343. THE MOON, JUPITER, AND LIFE ON THE EARTH
Cameron, A. G. W. 1997. The origin of the moon and the single impact hypothesis V. Icarus 126:126–137.
Cameron, A. G. W., and R. M. Canup. 1998. The giant impact occurred during Earth accretion. Lunar and Planetary Science Conference 29: 1062.
Cameron, A. G. W., and R. M. Canup. 1999. State of the protoearth following the giant impact. Lunar and Planetary Science Conference 30:1150.
Chambers, J. E., and G. W. Wetherill. 1998. Making the terrestrial planets:N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327.
Chambers, J. E.; Wetherill, G. W.; and Boss, A. P. 1996. The stability of multi-planet systems. Icarus 119:261–268.
Hartmann, W. K.; Phillips, R. J.; and Taylor, G. J. 1986. Origin of the moon. Lunar and Planetary Institute, 1986.
Ida, S., and Lin, D. N. C. 1997. On the origin of massive eccentric planets: Detection and Study of Planets Outside the Solar System, 23rd meeting of the IAU, Joint Discussion 13, 25–26 August 1997, Kyoto, Japan. 13, E4
Laskar, J.; Joutel, F.; and Robutel, P. 1993. Stabilization of the Earth’s obliquity by the moon. Nature 361:615–617.
Stevenson, D. J., and Lunine, J. I. 1988. Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75:146–155.
Wetherill, G. W. 1994. Possible consequences of absence of Jupiters in planetary systems. Astrophys. and Space Sci. 212:23–32.
Wetherill, G. W. 1995. Planetary science—how special is Jupiter? Nature 373:470. LIFE ON PLANETS
Beatty, J. K. 1996. Life from ancient Mars? Sky and Telescope 92:18.
Carr, M. H. 1998. Mars: Aquifers, oceans, and the prospects for life. Astronomicheskii Vestnik 32:453.
Chyba, C. F., et al 1999. Europa and Titan: Preliminary recommendations of the campaign science working group on prebiotic chemistry in the outer solar system. Lunar and Planetary Science Conference 30:1537.
Clark B. C. 1998. Surviving the limits to life at the surface of Mars. Journal of Geophysical Research 103:28545.
Farmer J. 1998. Thermophiles, early biosphere evolution, and the origin of life on Earth: Implications for the exobiological exploration of Mars. J.Geophys. Res., 103:28457.
Farmer, J. D. 1996. Exploring Mars for evidence of past or present life: Roles of robotic and human missions. Astrobiology Workshop: Leadership in Astrobiology,A59–A60.
Jakosky, B. M., and Shock, E. L. 1998. The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res. 103:19359.
Kasting, J. F. 1996. Planetary atmosphere evolution: Do other habitable planets exist and can we detect them? Astrophysics and Space Science 241:3–24.
Klein, H. P. 1998. The search for life on Mars: What we learned from Viking.J. Geophys. Res. 103:28462.
Mancinelli, R. L. 1998. Prospects for the evolution of life on Mars: Viking 20 years later. Advances in Space Research 22:471–477.
McKay, C. P. 1996. The search for life on Mars. Astrobiology Workshop: Leadership in Astrobiology, et al. 12.
McKay, D. S., et al. 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.
Nealson, K. H. 1997. The limits of life on Earth and searching for life on Mars. J. Geophys. Res., 102:23675.
Owen, T., et al. 1997. The relevance of Titan and Cassini/Huygens to prebiotic chemistry and the origin of life on Earth. Huygens: Science, Payload and Mission, Proceedings of an ESA conference, ed. A. Wilson p. 231.
Shock, E. L. 1997. High-temperature life without photosynthesis as a model for Mars. Journal of Geophysical Research, 102:23687.
Spangenburg, R., and D. Moser. 1987. Europa: The case for ice-bound life.Space World 8:284.
Urey, H.C. 1962. Origin of life-like forms in carbonaceous chondrites. Nature 193:1119–1123.
Caldeira K., and Kasting, J. 1992. The life span of the biosphere revisted. Nature 360:721–723.
Caldeira, K., and Kasting, J. F. 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon ice clouds. Nature 359:226–228.
Goldsmith, D., and Owen, T. C. 1992. The search for life in the universe. New York: University Science Books.
|